Hadron Ion Tea (HIT) Seminar Series


[formerly the Heavy Ion Tea Seminars]


Nuclear Science Division


Lawrence Berkeley National Laboratory

HIT seminars are on Tuesdays and Thursdays at 3:30pm Pacific Time   (unless otherwise noted)

Organizers: Yuxun Guo, Bigeng Wang, Nu Xu, Zhenyu Ye & Wenbin Zhao

HIT zoom link 

Previous seminars can be viewed on our HIT Youtube Channel

Upcoming seminars

Welcome to our Hadron-Ion Tea Seminar Series in 2024!  All talks are available on zoom, some are in-person as well - we hope you join us!

December 10 2024 (in person)

Kenneth Scott Mcelvain (Berkeley University & LBNL)

Host: Andre Walker-Loud

Title: Adiabatic Quantum Computation with the Fermionic Position Space Schrödinger Equation

Abstract:  I describe an efficient encoding of the fermionic Schrödinger equation in first quantization as a spin system Hamiltonian.   The challenging part of the construction is the implementation of the kinetic energy operator, which is essentially the Laplacian. The finite difference implementation on the lattice combines contributions from neighboring lattice sites, which is complicated by fermionic exchange symmetry.

January 21 2025 (online)

Mi Ke (CCNU)

Host: Nu Xu

Title: Recent results on Baryon correlations at RHIC-STAR

Abstract: In high-energy nuclear collisions, the measurements of two-particle femtoscopy is a powerful and unique method for extracting information about the femtoscopic spatio-temporal properties of the source and characterising the final state interactions (FSI). However, measurements of baryon correlations are scarce. Understanding the strong interactions between baryons, especially nucleon-nucleon (N-N), hyperon-nucleon (Y-N) and hyperon-hyperon (Y-Y) interactions, are crucial for comprehending the equation-of-state (EoS) of the nuclear matter and inner structure of neutron star. Furthermore, baryon correlations involving light nuclei, which are loosely bound objects, are critical for understanding many-body interactions and the production mechanisms of light nuclei.

    In this talk, we will present recent results on baryon correlations measured with RHIC-STAR experiment, including p-p,  p-d, d-d, p-\Lambda, p-Xi^-, and d-\Lambda. Extracted source size parameters, driven by collision dynamics, and FSI parameterization, determined by the nature of the particle pairs under study, will be discussed within the framework of lattice calculations (interaction potentials) and hadronic transport model calculations.

Postponed (Date To be determined)

Ben Gilbert (Livermore)

Host: Spencer Klein

Title: Measurement of photonuclear dijet production in ultra-peripheral Pb+Pb collisions at the LHC with the ATLAS Detector

Abstract:  In ultra-relativistic heavy ion collisions, the charged ions produce an intense flux of equivalent photons. Photon-induced processes are the dominant interaction mechanism when the colliding nuclei have an impact parameter larger than the nuclear diameter. In these ultra-peripheral collisions (UPCs), the photon provides a clean, energetic probe of the partonic structure of the nucleus, analogous to deep inelastic scattering. This talk presents a measurement of jet production in UPCs performed with the ATLAS detector using high-statistics 2018 Pb+Pb data. Events are selected using requirements on jet production, rapidity gaps, and forward neutron emission to identify inclusive photo-nuclear hard-scattering processes. These measurements also include detailed studies of rapidity gap distributions and nuclear break-up effects, allowing for precise comparisons between data and theory for inclusive photo-nuclear processes. The measured cross-sections are compared to theoretical models in phase-space regions where significant nuclear PDF modifications are expected but not well constrained by world data, demonstrating the potential of these data to provide a strong new constraint on nPDF effects.